Confidential and Proprietary

Lesson #1: Talking with Socialbot and simple programming
Socialbot is a artificial intelligence software program. In natural everyday language, it can do various intelligent functions such as: hear your name, recall your name, add two numbers, report the date, engage in a knock-knock joke, give you its name, infer your gender from your name, and so on. To use the program, launch "Socialbot.exe".

A sample interaction:
input: hello

bot: hello there, nice to meet you

input: what is my name

bot: I don't know your name

input: it is Dave
bot: hello Dave, nice to meet you. Thank you for telling me your name

input: no problem, what is your name

bot: my name is Truman
input: what is 2 plus 5

bot: The sum of 2 and 5 is 7.

input: what is a horse

bot: horse is a mount creature. horse is a fantasy object. go on.

input: what month is it

bot: It is Oct
input: and what is my age

bot: I don't know your age. I'm sorry, either I didn't understand you or you didn't tell me your age

input: it is 33

bot: If you are 33 years old then you are a adult. Thank you for telling me your age

input: goodbye

bot: goodbye and hope to talk to you again
When you exit the program, Socialbot quits and creates a data file called "history.txt" which contains all it learned about you. When you run the program again later, it uses this data file to continue the relationship with you.

Socialbot's programming is organized into "cases". Each case keys to specific grammatical patterns. A grammar pattern is a single word, a phrase or something more complex (as we’ll see later). As you see in <pattern> below, each pattern is separated by a “|” (called a “pipe” symbol). If there is a match between the user's typed input and a grammar pattern then additional programming inside <code> is activated to remember, infer and/or reply to the user's input. A simple behavior:

<case>

<function> say hello </function>

<pattern> hello|hi there|hey there|good morning|good evening|greetings </pattern>

<code>

$output = "hello there, nice to meet you";
$expression = "greeting";

</code>

</case>

This behavior’s <function> is to “say hello”. If the user types “hello” or “good morning” or any of the other words in <pattern> then Socialbot outputs what’s indicated in $output, which is “hello there, nice to meet you.” If the animation feature is active then the character will give the “greeting” gesture as indicated by $expression.
An educated Socialbot has hundreds or thousands of cases. It tries each case from first to last. In theory, an input might trigger several outputs. But Socialbot only displays the first output triggered by your input and stops searching other cases.
In addition to specific behaviors, Socialbot also draws upon general world knowledge contained in "data.xml". If the user asks “what is a horse” then Socialbot looks in its database and states what category or categories describe a horse (a horse is an animal, mammal, mount, farm animal, etc).

Lesson #2: Programming variables, mathematics and memory
To really understand what’s going on, let’s explore another case to understand in more depth.

<case>

<function> add two numbers </function>

<pattern> is (.+?) plus (.+?)|add (.+?) to (.+?)|sum of (.+?) and (.+?) </pattern>

<code>

$sum = $2 + $3;

$memory{"math sum"} = $sum;

$output = "The sum of $2 and $3 is $sum.";

</code>

</case>

There are three grammatical patterns is the example above. These patterns are more than literal words. They include blank slots indicated by “(.+?)”. The blank slots are flexible. A user might type “what is 2 plus 5” or might type “what is 17 plus 9”. Both these inputs have the same grammatical pattern.

A computer program understands and manipulates “variables”. Variables are like boxes which contain literal data like numbers or words. In the example, we see three lines of code. Each line indicates the variable name on the left side and sets that variable equal the variable name or literal data on the right side.

In the first line, $sum = $2 + $3, a math operation is performed. There are three variables called $sum, $2 and $3. Variable names have dollar signs in front of them. The plus sign indicates an addition operation. If $2 contains the number 2 and $3 contains the number 5, then 2 and 5 are added together and $sum is set equal to the result 7. Socialbot programming recognizes common math operators such as + for plus, and also:

- for minus

* for times

/ for divided by

And just like an algebra equation you can have multiple options on one time, such as $2 + $3 - $4, or $area =2 * $pi * $radius to compute the perimeter of a circle. You need to tell Socialbot that $pi = “3.14”.
Whenever the program matches the user’s input to a grammar pattern, it automatically places the whole match in the variable called $1. If the behavior has open-ended slots, such as the two slots in the above example, then the first slot’s content is automatically placed in $2, the next one in $3, and so on.

Now, in the second line of code, the program places the value of $sum into long term memory. Long term memory is like a giant filing cabinet with many folders. The folders are labeled and contain data. Here, the value of $sum is placed in a memory folder labeled “math sum”. This information can be retrieved and output later like this:

$var = $memory{“math sum”};

$output = “I recall the mathematical sum was $var”;
Finally, in line three, the variable $output is set equal to a written sentence that contains a combination of literal words and variable names. Here, $output might be set equal to “The sum of 2 and 5 is 7.” Notice that the variables $2, $3 and $sum were replaced with the values they contained so the user gets a sensible response.
Socialbot has “built in” knowledge: day, month, date, time, year, conversation length, conversation count, last case count, and this case count. Conversation length is the length in minutes of the current conversation. Conversation count is the total number of conversations Socialbot has had with you. You can access these this way:

$var = $memory{"month"};
$output =”the current month is $var;”
Now what if the user entered, “what is 4 cows plus 2 horses”. The code above assumes the user enters only numbers but what if they don’t? There is a built-in way to strip a variable of all non-numeric values:

$num = number($2);
This is an example of a built-in “function”. A function takes one (or more) variables in the parentheses, makes some kind of change to the variable, and then returns a result. Here, $2 equals “4 cows” and $num equals “4”.

Lesson #3: Programming conditionals, inferences and queries
What is life without conditional situations and what is intelligence without the ability to make inferences! If I say my name is “Dave” then Socialbot should remember my name, infer I am male, and remember that inference. We also want Socialbot to know if I’ve mentioned my name before and raise an alert if I have. Look at this behavior:

<case>

<function> learn user's name </function>

<pattern> my name is (.+?)|I am named (.+?)|refer to me as (.+?)|please call me (.+?) </pattern>

<code>

$list = $category{"male name"};

if($2 in $list) {
$memory{"user sex"} = "male";
$memory{"user name"} = $2;
$output = "hello $2, nice to meet you sir";

}

$list = $category{"female name"};

if($2 in $list) {
$memory{"user sex"} = "female"; $memory{"user name"} = $2;
$output = "hello $2, nice to meet you madam"; }

</code>

</case>

Line one sets $list equal to the contents of a conceptual category called “male name”. This category contains a giant list of several hundred common male names. This information is stored in “data.xml”. Line two does a conditional check. If the value in $2 is in $list then all the code inside the curly-brackets is executed. Here, “user sex” is set to male, “user name” is set to the male name, and the output is set and includes the name and the word “sir”. The next lines do the same thing for female names but the formatting is different to illustrate alternate formatting. What’s important is that “;” separate commands and {} groups them together. Spelling and capitalization are important. Always use “if”; never use “IF” or “If”. Now let’s take a look at a similar behavior used to recall the user’s name:
<case>

<function> recall user's name </function>

<pattern> is my name|tell me my name|know my name </pattern>

<code>

$var = $memory{"user name"};

if($var) { $output = "your name is $var"; }

else { $output = "I don't know your name, please tell me."; $listen = "user name"; }

</code>

</case>
The last code line introduces a variable called $listen, which tells Socialbot to listen for the user’s name. Example:

user: tell me what is my name

bot: I don’t know your name, please tell me

user: it’s Dave

bot: hello Dave, nice to meet you sir.

When the user says, “it’s Dave”, Socialbot hears “my name is Dave”. It will ask three times before giving up. Also notice “if($var)”. This means, “if $var has some value whatever that may be.”

Here is another example of a three-part conditional statement, where “eq” means equals. (By the way, “ne” means not equals, “gt” means greater than, and “lt” means less than.) By the way, “unless” means the opposite of “if”.
<case>

<function> transitive closure </function>

<pattern> if (.+?) equals (.+?) and (.+?) equals (.+?) then </pattern>

<code>

if($3 eq $4) { $output = “then the logical inference is that $2 equals $5.” }

elsif($3 eq $5) { $output = “then the logical inference is that $2 and $4 are similar.” }

else { $output = “no logical inference can be made here”; }

</code>
Lesson #4: Programming random options, set sequences and confirmatory questions
Sometimes we want to randomly select from a list of options. We use a built-in function called “random”. In the example below, a male name is randomly chosen and stored in $var.
<case>

<function> pick a random male name </function>

<pattern> random male name </pattern>

<code>

$list = $category{"male name"};

$var =random($list);

$output = "How about $var, is that a good name?";

</code>

</case>
Conversation often includes a sequence of behaviors, where what we say now depends on what we just said before. Telling a knock-knock joke is one example. Socialbot knows the last case it did by accessing $memory{“last case”}. In this example, “continue knock knock” will only activate if the previous case was “start knock knock”. If <pattern> equals (.+?) that means, “if the user types in anything, doesn’t matter what.”
<case>

<function> start knock knock joke </function>

<pattern> knock knock </pattern>

<code>

$output = "who's there?";

</code>

</case>
<case>

<function> continue knock knock </function>

<pattern> (.+?) </pattern>

<code>

$var = $memory{"last case"};

if($var eq "start knock knock joke") { $output = "$2, who?"; }

</code>

</case>

Socialbot also handles yes/no confirmatory questions, such as “is that really your name” or “are you a young adult?” If the user answers “no” then Socialbot queries further for the actual name, age, etc. If the user answers “yes” then Socialbot does nothing special.
<case>

<function> learn user's university </function>

<pattern> I go to (.+?)|my university is (.+?)|I attend (.+?)|I am going to (.+?) </pattern>

<code>

$list = $category{"university"};

if($2 in $list) {

$output = "wow, you go to $2, you must be smart!";

$memory{"user university"} = $2;
$var = $memory{"user age"};

unless($var) {
$output .= " Are you a young adult?";

$memory{"user age"} = 20; $confirm = "user age";

}

}

</code>

</case>
Here, if the user says “I go to UCLA” and the user’s age is unknown, then Socialbot assumes the user’s age is 20 and outputs, “Wow, you go to $2, you must be smart! Are you a young adult?” If the user says “no” then Socialbot will ask “What is your age?” and will listen for a response. Notice the code “unless($var)”. It means, if($var eq “”).

Lesson #5: Programming Socialbot to mirror input, detect themes and count events
Sometimes we don’t want Socialbot to process and understand everything the user says. We just want to mirror back or capture and recall whatever is said. But language can be messy and ambiguous. Socialbot must keep what’s usable and discard the rest. To do this, we use the neuter() function, which truncates a string of words at the first grammatical marker before a pronoun.

<case>

<function> learn user's preference </function>

<pattern> I like (.+)|I love (.+)|I prefer (.+)|I enjoy (.+) </pattern>

<code>

$var = neuter($2);

if($var) {$output = "why do you like $var? tell me more";

$memory{"user preference"} = $var;

}

</code>

</case>

First notice that the <pattern> includes (.+) and not (.+?). If the user says, “I like peaches and cream” then $2 equals “peaches and cream” and not just “peaches”. Everything the user says is put in $2.

Now, what does neuter do? If the user enters, "I like various old-style cars but not the ones she likes" then $var equals "various old-style cars". In the future, if the user perhaps asks, "what do I like?" then Socialbot can respond, "you like various old-style cars". It won’t remember anything with ambiguous pronouns like “she” and “you”. (Why? When someone says “I like you” we later recall and say back, “you like me”. This requires some special code.) Marker words in English include “and”, “because”, “but” and many others.

Socialbot does automatically handle some pronouns. If the user inputs pronouns like "he" and "she", recent input and output are searched for specific male and female names to clarify who the user is referring to. For example:

bot: tell me more about your friend Kwan

user: he works at UCLA

bot: I will remember that Kwan works at UCLA

You don’t need to write code to turn “he” into “Kwan”. It’s automatic.

Here’s another capability: When two or more related words or terms appears anywhere together, they suggest a theme. For example, “cabin” by itself might refer to a ship cabin or a forest cabin. If we hear someone say, “cabin” and then “lake” and “hike” in the same sentence however we understand the user is referring to a “nature” theme. We can use the search() function to recognize themes.
<case>

<function> respond to a nature theme </function>

<pattern> (.+) </pattern>

<code>

$list = $category{"nature theme word"};

$count = search($2,$list);

if($count > 1) {
$memory{“user described theme”} = "nature";

$output = “Nature is lovely isn’t it? But not for robots!”;

}
$memory{“nature theme count”} = $memory{“nature theme count”} + $count;

</code>

</case>

The search() function counts how many items in $list appear in the variable $2. If the user said more than 1 thematic word then more code is executed. You can also use themes to track and sort abstract qualities about the user, such as which theme among many the user likes the most. You use a numeric counter. In this case, every nature word the user says is noted and added to an ongoing count that is stored in and can be accessed from $memory{“nature theme count”}. Later, if asked, Socialbot can determine if the user prefers most nature, the city, or other themes.
Lesson #6: Using Socialbot with the ER1 robot

Socialbot connects to the ER1™ robot by Evolution Robotics (www.evolution.com). To synch the two programs, first launch the ER1 Robot Control Center and set “remote control” to port 9000. You will get a Control Center message saying the robot is waiting for instruction. Open the Socialbot config.txt file and make sure robotics is set to “on.” Then launch Socialbot.

Wait for Socialbot to vocalize “I am ready.” Then wait for a “bell” sound. The bell tells you the microphone and the camera are waiting for your input. At the start, there may be multiple bells as the buffer clears. Speak clearly into the microphone. Longer input is more easily recognized. For example, “please tell me what time is it right now” is more likely discerned over “what’s the time?” Good book-end phrase are “please” and “right now.” Also, numbers like “7” work better than numbers like “2” and “4.”
Some of the behaviors that come with Socialbot work differently with the ER1. For example, Socialbot will not ask you for information such as “how old are you?” This avoids the problem of the robot constantly starting new threads of conversation simply because of misunderstood speech input. You are free to alter these behaviors if you like.

Socialbot output is spoken. Initial speech utterances may come very slowly as the speech synthesizer is loaded and “warms up.” It may appear nothing is happening. Please be patient. After a few interactions, the speech synthesizer should speed up considerably.
A sample interaction:

Bot: I am ready
input: good morning, what is your name
bot: my name is Truman
input: please move forward 7 inches
[robot then moves forward]

output: I have moved forward 7 inches

input: please turn right 45 degrees

[robot then turns right 45 degrees]

output: I have turned right 45 degrees

input: now please turn back

[robot then turns left 45 degrees]

output: I have turned back -45 degrees

input: please open your hand

[robot then opens its gripper, assuming it was closed before]

output: I have opened my gripper hand

input: please tell me what is this

[user holds up flashcard of tree]

output: I see the tree 8.2 centimeters in front of me

input: do you detect anything

output: I detect an obstacle in front of me
[probably you the user!]

Socialbot stores information about the ER1 and its sensory perceptions in $robot instead of $memory. For example, you can find out if Socialbot is properly connected to the ER1 by accessing $robot{“status”}. Either $var will equal “connected” or $var will equal “no access.”

You can command the robot to move, use its gripper arm or perform other actions. Observe:

<case>

<function> command robot forward </function>

<pattern> move forward (.+?) feet|move (.+?) feet|go (.+?) feet </pattern>

<code>

$var = number($2);

if($var) { action(“move $var feet”);

$output = “I have moved forward $var feet”;

}
</code>

</case>

The action() function accepts ER1 API commands including “open gripper,” “move X feet,” “move X degrees,” etc. Moving “degrees” makes the robot rotate. Moving a negative amount causes the robot to rotate or move backward.

Lesson #7: Programming Socialbot for use with the ER1 robot
Each time you speak input, Socialbot polls the ER1’s camera, gripper and infrared sensors.
Infrared sensor results are stored in $robot as: “front sensor”, “left sensor”, and “right sensor.” In the example below, if the robot is given a command to move 7 inches forward, it moves if and only if the front infrared sensor is clear (no obstruction is detected). Otherwise it stays still.
<case>

<function> command robot forward </function>

<pattern> move forward (.+?) inches|go (.+?) feet|move (.+?) feet </pattern>

<code>

$var = $robot{“front sensor”};

if($var eq “clear”) {

action("move $var inches");

$output = “The path was clear and I moved forward $var inches”;

}

elsif($var eq “obstacle”)
{ $output = “I can’t move forward because the path is obstructed”; }
</code>

</case>

Socialbot is also aware of objects the ER1 has been trained to recognize and spots with its camera. For example, if a familiar flashcard of a ball named “red ball” is placed 10 centimeters from the camera, Socialbot will get the following information: $robot{“spot object”} = “true”, $robot{“object name”} = “red ball”, and $robot{“object distance”} = 10. Socialbot does not do anything with this information unless prompted through conversation. For example, as you hold up the flashcard, you might speak into the microphone, “please tell me what is this object?”

<case>

<function> what I see </function>

<pattern> what do you see|what is this|what this is|what this object is|you see|objects you detect </pattern>

<code>

$var = $robot{“spot object”};

if($var eq “true”)

{

$x = $robot{“object name”};

$y = $robot{“object distance”};

$output= “I see $x $y centimeters away”;

}

</code>
</case>
You can access the state of the gripper arm and move it. Gripper related variables include “gripper status” (open or closed) and also “gripper position” and “gripper content” which work as explained in the ER1 API manual.
Socialbot can respond to contextual commands. For example, after telling Socialbot to “please turn right 45 degrees” you might say, “now rotate back,” activating this command:

<case>

<function> rotate back </function>

<pattern> turn back|back again|rotate back|return back|original position </pattern>

<code>

$var = $memory{"degrees rotated"};

$var *= -1;

action("move $var degrees");

$output = "I have turned $var degrees back";

$memory{"degrees rotated"} = $var;

</code>

</case>
Copyright Dario Nardi, December 2003, April 2005

